34.5/115 kVA Solar Power Plant & Substation Senior Design Project

Senior Design Team 18 - May 2024

Siti Mohd Radzi, Baylor Clark, Eduardo Jimenez-Tzompaxtle, Chicheng Tang, Eli Schaffer, Liam Gossman

Agenda

- Safety Moment
- Gantt Chart
- Substation Overview
 - Substation Design Steps
- Solar Array/Field Overview
 - PV Cells
 - Combiner Boxes
 - Inverters (Skids)

Safety Moment - Sleep

Why is it important?

- Maintain a healthy weight
- Reduces stress and improve your mood
- Get along better with teammates

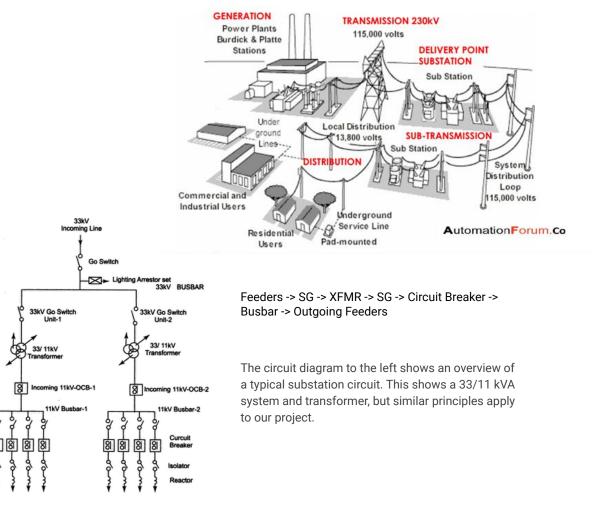
Signs of improper sleep:

- Slowed thinking
- Worse memory
- Lack of attention span

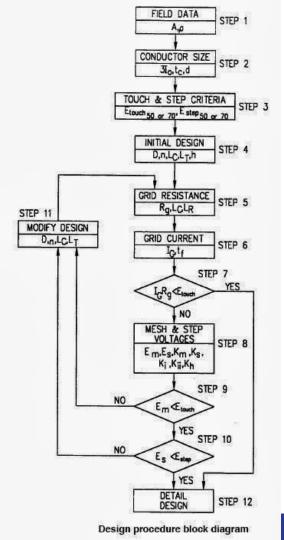
TENTATIVE F	PLAN		
SEMESTER	DESIGN (AUTOCAD)	ANALYSIS & CALCULATION	SIMULATION (ETAP)
FALL 2023	Array Rack Solar Panel Layout Solar Field Layout	Array parameter Power Calculation Economic Cost Analysis Voltage-drop calculation	Solar Power System
SPRING 2024	One-line diagram Yard equipment layout Bus Plan Grounding Layout	Sizing layout Grounding calculation DC and AC load Cost Lightning Protection Calculation	Substation simulation

Gantt Chart (FALL 2023)

4																			
	PROJECT	T TITLE	[115/34.5KV	/ Solar Power Plant & Sub	ostatior	COMPANY NAME	[Black &	Veatch]											
5	PROJECT	T MANAGER	[Adam Schroed	er, Michael Mcdonald]		DATE	9/12/23												
6																			
7																			
8							PHASE ONE			PHASE TWO		diaman and a second	PHASE THRE			PHASE FOUR			PHASE FIVE
9 10		MBER TASK TITLE	TASK OWNER	START DATE DUE DATE DU	URATION PCT OF TASK COMPLETE	WEEK 1	WEEK 2	WEEK 3	WEEK 4		WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEEK 10	WEEK 11	WEEK 12	WEEK 13	WEEK 14
	-	Documentation				MIWRF	MIWR	FMIWR	PMIWP	PMIWR	- MIWRI	MIWR	PMIWR	FMIWR	PMIWRP	MIWR	PMIWR	F M I W K F	MIWRPM
	1.1	Weekly Agenda	_	201															
	1.1	Meeting Minutes	;	08/	H														
	1.3	Bi-weekly report																	
	1.4	Presentation Slides												-•					
	1.5	Preamble Document			ā														
17	2	Research																	
18	2.1	Utility PV Solar Panel	Liam 💌	9/12/23															
19	2.2	Safety Moment	Eli 👻																
20	2.3	Data sheet for Combiner Box	Eduardo 💌																
21	2.4	Data sheet for Inverter	Chichen 🖕																
22	2.5	New Mexico Vs Iowa as location for power plant	Bell 💌																
23	2.6	Substation Design	Eli & - Baylor																
24	2.7	Presentation Slides	ALL																
25	3	Component Selection																	
26	3.1	Solar components (string, array,rack)																	
27	3.2	Location	· •																
28	3.3	Field																	
29	3.4	Substation Component (Main, and bus)	•																
30	4	Array Parameter Calculation																	
31	4.1	String size	· ·																
	4.2	Electrical rack size																	
	4.3	CB capacity	•																
	4.4	Array design	*																
	4.5	Array size	•																
	4.6 4.7	Total equipments																	
	4.7	Total cost Total Power (AC & DC)																	
	4.9	Voltage drop calculation			H														
	5	Designing Solar Panel (AutoCAI	•																
41	5.1	Solar Panel																	
42	5.2	Array																	
	5.3	Rack	•																
	5.4	Solar Layout	•																
	5.5	Solar Field Design																	
	6	Simulation	•															-	
	6.1	Designing Solar Power System																	
48	6.2	Assign requirements and value																C	


Gantt Chart (SPRING 2023)

ROJECT TITLE		[115/34.5KV Solar Po	n	COMPANY N	(Black & Vestch)																			
OJECT MANA	AGER	[Adam Schroeder, Michael N		DATE																				
	TASK TITLE						HASE ONE			РНА	SE TWO			PHASE THRE	EE			PHASE FO	UR			PHASE FIVE		
VBS NUMBER		TASK OWNER START DAT	TE DUE DATE DURATION	PCT OF TASK COMPLETE			WEEK 2	WEEK 3				WEEK 6	WEEK 7			EEK9	WEEK 10	WEEK 1		WEEK 12	WEEK	WEEK 14		WEEK 15
1	initial Research																							
.1 5	Substation Component	•																						
2 5	Safety Moment	•																						
3 0	One-line diagram of substation	•																						
4 5	Substation Design	-																						
5 F	Presentation Slides	· · ·																						
	Component Selection	•																						
.1 E	Bus and line																							
	Main Component	•																						
	Component Spec	•																						
. 5	Substation Component (Main, and bus)	•																						
(Calculation	· · · ·																						
.1 E	Bus size	•																						
2 5	Substation sizing	•																						
2.1 [DC battery calculation																							
2.2 0	Grounding calculation	•																						
.3 /	AC load calculation	•																						
3.1 1	Total equipment	· ·																						
	Total cost	•																						
.3.1 1	Total Power (AC & DC)	*																						
	Designing																							
.1 0	One-line diagram of substation	•																						
2. E	Bus plan	•																						
3 0	Grounding diagram																							
4 0	Conduit diagram	•																						
4 V	Whole Solar and Substation Layout	•																						
5	Simulation (ETAP)																							
	Designing Solar Power System																							
	Assign requirements and value	*																						
	Simulation																							

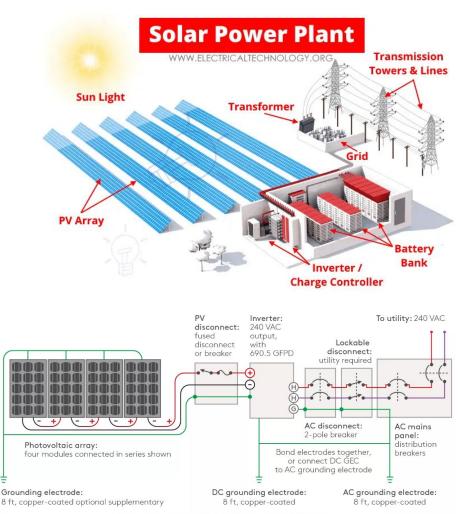

Gantt Chart : https://docs.google.com/spreadsheets/d/1JJT6Xag0IAaLGq4L6f2jQizj2VnZfP QUrBN0HkiYRI/edit?usp=sharing

Substation Overview

Transmission lines come into substation at 115 kVA. These lines then step down into transformers which take the voltage from 115 kVA to 34.5 kVA. The line then goes through switchgear to help service in case of a disaster. After the switchgear, the lines go to busbars which help distribute the voltage to different lines to be distributed.

https://www.watelectrical.com/electrical-sub station-definition-layout-uses-of-substations/

Substation Design Steps


The flowchart to the left shows different steps that go into designing a substation. These steps are outlined in the IEEE Standard 80-2000 which was then superseded by the IEEE Standard 80-2013. They focus mostly on the grounding aspect of the substation.

http://www.electrical-knowhow.com/2014/01/Final-Design-for-AC-Substations-Grounding-System.html

Solar Field Overview

- PV Array connected in series
 - String or Rack
- Produces DC current
- Inverter converts DC to AC for use in the power grid
- Disconnects are used throughout solar plant for safety purposes
- Some substations contain battery banks
- Power is then sent to substation to be distributed to the grid
- Sent through to utility service

https://www.electricaltechnology.org/2021/07/solar-power-plant.html https://www.essentracomponents.com/en-us/news/industries/renewabl e-energy/how-to-wire-solar-panels

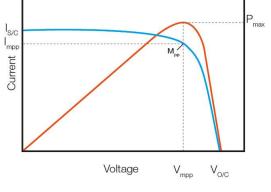
PV Cells

Relationship between irradiance and temperature

- In general, as solar radiance increases, surface/air temperature also increases
- Output current of PV devices is directly proportional to incident solar radiation, while output voltage decreases logarithmically. Power increases overall.
- Output voltage of PV devices is inversely proportional to cell temperature. Current increases slightly with temperature. Power decreases overall.

MPPT

• Tracking and controlling output voltage and current caused by changes in temperature and solar irradiance. Achieved by sampling outputs and applying the correct load to draw maximum power.


Applications

• Solar power is not a full controllable source of energy and is often inconsistent. In order to properly connect a solar array to the grid, special constraints must be made in order to ensure power is generated/connected safely and efficiently to the grid as a whole.

https://www.fsec.ucf.edu/en/education/k-12/curricula/use/documents/USE_17_IrradianceTemperaturePV.pdf

https://www.tycorun.com/blogs/news/the-ultimate-guide-to-maximum-power-point-tracking-principles-fags-and-calculations

https://www.seaward.com/gb/support/solar/fags/84179-what-is-solar-pv-i-v-curve-tracing/

Utility Grade Solar Panels Data Sheet

Link for Solar Panels Data sheets: https://www.solarrun.com.au/solar-product-data-sheets/

https://www.amerescosolar.com/solar-panel-datasheet-library

Combiner Boxes

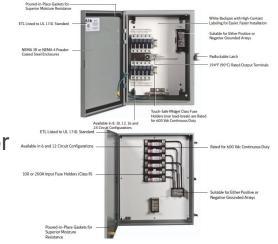
Main Purpose

- Merge multiple DC inputs
- Single DC output

Why use them?

https://www.bhgsip-mediakit.com/r5/what-yo u-need-to-know-about-a-solar-combiner-box/

- Overcurrent and overvoltage to improve dependability
- Materials, labor, wiring cost reduced


In between solar panels and inverter/charge controller

Combiner Boxes

Characteristics

- Prevent moisture by adding gaskets to each panel door
- High Contrast Labeling to read easier
- 8-24 circuit inputs with 310A-400A continuous max current
- 6-12 circuit output with 720A-1520 continuous max current
- 100A or 200A fuse holders

https://www.eaton.com/us/en-us.html

Utility Grade Combiner Box Data Sheet

Link for Combiner Data sheets:

https://us.solarpanelsnetwork.com/blog/best-solar-combiner-boxes/

https://www.datasheetarchive.com/COMBINER%20BOX-datasheet.html

Utility-grade Solar Inverters

Main Purpose

• Make the electricity generate by the solar panels able to transmit into the grid.

Why use them?

- Convert DC to AC
- Allows output to be synchronized with the grid
- The Maximum Power Point Tracking(MPPT) allow Solar panels work more efficiently
- Stop sending power to grid in case there is failure, to protect workers

Where is Inverters?

• Between Solar Panels and Transformer

TMEIC's Solar Ware Ninja modular string inverter skid.

Utility Grade Inverter Data Sheet

Link for Inverter data sheets:

Commercial and UtilityEatonhttps://www.eaton.com > ecm > idcplg

Updates

- 1. Intellectual Property and Non-Disclosure Agreements
- 2. Software updates (AUTOCAD, BlueBeam, ETAP)

