34.5/115 kV Solar Power Plant & Substation Senior Design Project

Senior Design Team 18 - May 2024

Siti Mohd Radzi, Baylor Clark, Eduardo Jimenez-Tzompaxtle, Chicheng Tang, Eli Schaffer, Liam Gossman

Agenda

- Safety Moment
- Calculations
- Equipment Updates
- AutoCAD Update
- ETAP
- Feedback

Safety Moment - Injury Treatment & Reporting

- Most common injuries:
 - Overexertion-related pain
 - Sprains, strains, and tears
 - Cuts, lacerations, and puncture wounds
- According to National Safety Council, in 2017, nearly 4.6 million medically consulter work injuries costing over \$161.5 billion
- First course of action is to determine severity of injury and contact 911 if needed
- Reporting an injury:
 - After treatment, report injury to workers' compensation carrier
 - Provide as much information as possible about injury and how it occured
 - Depending on severity a report may need to be filed with OSHA

Calculations

AC Load Calculation:

- 1. 180VA load per Outlet assumed as worst case
- 2. The worst case scenario will be as follows:
 - a) Time of day: Day (no lights on).
 - b) Temperature: 90 deg F (all Transformer fans on).
- c) Battery: Deep discharge (charger on full). 3. Worst case tripping conditions shall be as follows:
- a) XXXX fault
 - (1) XXX Breaker will trip
 - (1) XXX Breakerwill trip
- Ratings estimated.

Calculations

The continuous 120/240VAC single phase loads are as follows:

		Quantity	Load/Unit(W)	Amps (ea)	Voltage(V)	Total(W)	Amps Total
	Breaker Recepticle and Lights	1	210	1.75	120	210	1.75
	Transformer Fans	1	24,000	100.00	240	24,000	100.00
	Transformer Sump Pump	1	2,000	8.33	240	2,000	8.33
	Control House Lighting	20	36	0.30	120	720	6.00
Б	Yard Lights	1	55	0.46	120	55	0.46
듄	HVAC System	1	10,000	41.67	240	10,000	41.67
Building	Fire Detection Equipment	1	150	1.25	120	150	1.25
Control	Exhaust Fan	- 1	132	1.10	120	132	1.10
6				#DIV/0!		0	#DIV/0!
				#DIV/0!		0	#DIV/0!
AC Panel				#DIV/0!		0	#DIV/0!
0.				#DIV/0!	-	0	#DIV/0!
4				#DIV/0!		0	#DIV/0!
	Worst Case Tripping:						and the second s
				#DIV/0!		0	#DIV/0!
				#DIV/0!		0	#DIV/0!
	Total Worse Case AC Pan	el Load	1			37,267	#DIV/0!

Total Worst Case Load (+10 %)	40,994	#DIV/0!

Sizing Recommendation	ons:
Station Service - XXkVA	9.
MTS, Safety Switch - XX	'A

recommend XXXA Station Service Equipment

1. Breaker tripping load is temporary

2. 10% worst case scenario is added to the final value

https://docs.google.com/spreadsheets/d/1hwF8cv3VBiy1_Yih5wwwBzs9P8UB_BBc/edit?usp=sharing&ouid=101132689819119398819&rtpof=true&sd=true

Calculations

DC Load & Battery Sizing:

- 1. Fill out the DC Load Profile below. Read the assumptions and notes below the table.
- 2. Determine and record the current load amounts for 3 periods:
 - a. Period 1: T=0min Fault occurs, relays detect. Breakers Trip due to relay operation.
 - b. Period 2: T=1min Breakers are open, everything else is simply running.
 - c. Period 3: T=240min Fault is cleared, relays operate to close Breakers
- Create an account for the Enersys Battery Sizing Program
 https://bsp.enersys.com/bsp/index.do
 and enter your parameters to obtain a full battery system and PDF of the sizing report. This should give you a breakdown of the Amp-hours for the time periods determined.

Some notes on the table above and how to use it:

- Continuous load will be the above parameters <u>NOT</u> INCLUDING the trip coils from the breakers.
 - Keep in mind, there will be more than one of each type of relay, use your zones of protection to keep in mind how many of each there are.
 - 34.5kV Feeder position (array) –Primary SEL-411L, Backup SEL-451
 - Transformer Position Primary SEL-487E, Backup SEL-451
 - 115kV Line Position Primary SEL-411L, Backup SEL-311L
- There will be 3 periods of operation:
 - o Period 1: T=0min Fault occurs, relays detect. Breakers Trip due to relay operation.
 - o Period 2: T=1min Breakers are open, everything else is simply running.
 - o Period 3: T=240min Fault is cleared, relays operate to activate the Breaker close-coils, bringing the Breakers back into the closed position for normal operation.
- Last item listed are LED Lamps. These will be placed around the substation yard to illuminate important equipment and cabinets. Assume we have 8 of these.
- Assume a 60 Cell system
- Use device cut-sheets to find SEL parameters (you will need to create an account, should be quick to create!) for the relay current-draw.

DC Load & Battery Sizing (IEEE 485)

Extra Reference: https://ewh.ieee.org/r3/atlanta/ias/2014-2015 Presentations/2015-04-20 EEE%20IAS%20Stationary%20Battery%20Sizing.pdf

oad Profile						
Com	ponents	Load Current (A)	Nominal Voltage (V) DC	Inception and Active Shutout Time (Min.)	Power Requirement (remember to account for # of relays required)	Number of Componer
34.5kV Brea	ker:	Tripping Current: 3.3A Closing Current: 2.6A	70 – 140 90 - 140	0 -1	231 - 343W 234 - 364W	
115kV Bre	aker:	Tripping Current: 3.3A Closing Current: 2.6A	70 – 140 90 - 140	239- 240	462 - 924W 324 - 504W	
SEL-411L			125	1 - 240		
SEL-311L			125	1 - 240		
SEL-4207			125	1 - 240		
SEL-487E			125	1 - 240		
SEL-451			125	1 - 240		
Battery Monito	ring Equipment	0.024A	50 -180	1 - 240	6VA	
DC Ammeter		0.048A	125	1 - 240	3VA	
DC Voltmeter		0.048A	120	1 - 240	3VA	
SACO Annuno (L8)	ciator		125	1 - 240		
Edwards Bell		0.012A	125	1 - 240	1.5VA	
Power Line I Lamps (LED		0.017A	125	1 - 240		8
		60 cell system	Continuous Load	Discontinuous Load Current		
			T = 0	T = 1 min	T = 240 min	

https://docs.google.com/spreadsheets/d/1xRuwZ2yvrR49pMpPJpyQim3Ds8Mtx1fYL_kV4MVxrck/edit?usp=sharing

Calculations

Grounding calculation:

Requirements:

- 1. Find the uniform soil resistivity (ρ_a) in ohm-m using the given soil resistivity measurements.
- Find the minimum conductor size (in kcmil) for a copper, soft-drawn grounding conductor. (Although the minimum value may be significantly smaller, 4/0 AWG is typically the smallest size conductor used in a substation grounding grid)
- 3. Find the tolerable Step (E_{STEP}) and Touch (E_{TOUCH}) voltages with a surface layer derating factor $C_S=0.8$. (Note that equations are 31-33 are labeled incorrectly as step equations. They are touch equations)
- 4. Design a square grid for the given substation area and find the maximum step (E_s) and maximum mesh/touch (E_m) voltages. Refine the ground grid design as needed so that the maximum step/touch voltages are less than the tolerable step/touch voltages that were found in problem 3. If needed, use ground rods with a length of 20'.
- 5. Provide a drawing of the ground grid in the proposed substation area showing grid spacing distances. Industry standard typically has the ground grid extend 3 feet outside the fence line.
- Provide a short report that includes references, any assumptions made, and final results (please include equations and calculations, even if hand-written).

Task: Get the outer dimensions of substation fence tor grounding calculation.

https://docs.google.com/spreadsheets/d/1xRuwZ2vvrR49pMpPJpvOim3Ds8Mtx1fYL_kV4MVxrck/edit?usp=sharing

Grounding calculation (IEEE 80)

Reference	https://community.ptc.com/sejnu66972/attachr	ments/sejnu66972/PTC	Mathcad/175612/	1/Earthing%20Exer	cise
Given parame	ters for grounding				
	Parameters	Value	Unit	Symbols	
	Maximum grid current	32	kA		
	Fault duration for conductor sizing	1	s		
	Shock duration	0.5	s		
	Surface layer thickness	0.15	m		
	Surface layer resistivity	3000	ohm-m		
	Body weight	50	kg		
	Ambient temperature	40	С		
	Grounding conductor depth	0.15	m		

Parameters to calculate/find

Parameters	Value	Unit	Symbols
Number of parallel conductors			n
Spacing between n parallel conductors		m	D
grid conductor diameter		m	d
Total length of conductor in the horizontal grid		m	Lc
Perimeter length of grid		m	Lp
Area of the grid		m^2	А
Max length in the x direction		m	Lx
Max length in the y direction		m	Ly
Max distance between any two points on the gr	id	m	Dm

Equipment

34.5 kV PTs and CTs available from Kuhlman Electronic Corporation

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://library.e.abb.com/public/5e984f081be0b5ccc1257b13005740d7/34500%20section_updated_050212.pdf

34.5 kV lightning arrestor from Hubbell Power Systems

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://hubbellcdn.com/catalogfull/70-SurgeArresters1_IEEEandIEC.pdf

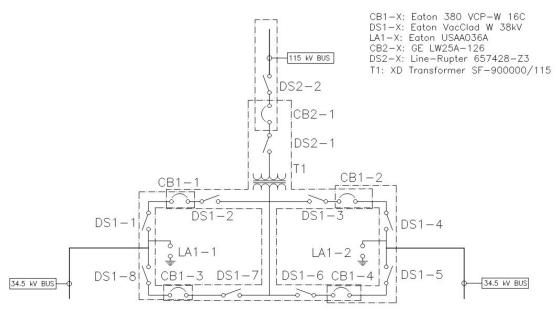
SEL-751 feeder protection relay (under/overvoltage, frequency, arc flash)

https://selinc.com/products/751/

Possible switchgear

https://hfy-substation.en.made-in-china.com/product/MSCnhjHBGvRd/China-Kyn61-40-5-Type-Electrical-Switchgear-and-Medium-Metal-Switchgear-Zs3-2-36kv.html

Possible station power transformers (45 kVA - 2.5 MVA)


https://hfy-substation.en.made-in-china.com/product-group/OekaQJLMYuhH/34-5kv-Pad-Mounted-Transformer-1.html

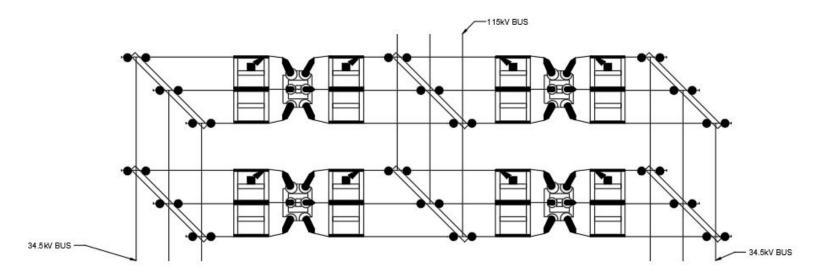
https://www.alibaba.com/product-detail/Three-phase-pad-mounted-34-5kv_1600245187315.html

https://www.eaton.com/us/en-us/catalog/medium-voltage-power-distribution-control-systems/envirotran-three-phase-pad-mounted-transformer

AutoCAD - One Line

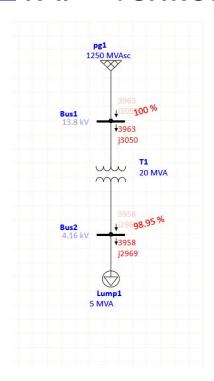
1 SUBSTATION ONE-LINE

SEE SS110 FOR MORE INFO SEE SS112 FOR MORE INFO SEE SS114 FOR MORE INFO SEE SS111 FOR MORE INFO SEE SS113 FOR MORE INFO

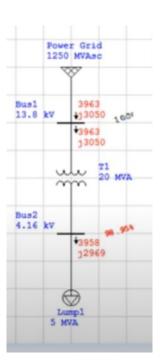

SEE SS115 FOR MORE INFO

- Added lightning arrestors
- Found datasheets and nameplates for equipment

SHEET LIST TABLE					
SHEET NUMBER	SHEET TITLE	SHEET NUMBER	SHEET TITLE		
E100	PROJECT TITLE	SS100	SUB DESIGN SYMBOLS		
S100	SITE PLAN	SS101	SUB ONE-LINE		
S101	SITE KEYPLAN	SS102	SUB KEY PLAN		
S102	SITE WIRING	SS103	SUB ONE-LINE DETAILS		
PV100	SOLAR KEY PLAN	SS104	SUB GROUNDING INFO		
PV101	OVERALL ARRAY LAYOUT	SS105	SUB LIGHTNING INFO		
PV102	ARRAYS 1 - 12 LAYOUT	SS106	SUB ONE-LINE PLAN VIEW		
PV103	ARRAYS 13 - 15 LAYOUT	SS107	FUTURE		
PV104	WIRING ARRAYS 1 - 12	SS108	FUTURE		
PV105	WIRING ARRAYS 13 - 15	SS109	FUTURE		
PV106	SOLAR DESIGN DETAILS	SS110	CB1-X DATASHEET		
PV107	AC ONE LINE	SS111	CB2-X DATASHEET		
PV108	DC ONE LINE	SS112	DS1-X DATASHEET		
PV109	STRING ONE LINE	SS113	DS2-X DATASHEET		
PV110	PANEL DATASHEET	SS114	LA1-X DATASHEET		
PV111	COMBINER BOX DATASHEET	SS115	T1 NAMEPLATE		
PV112	SKID INVERTER DATASHEET				



AutoCAD - One Line Plan View



ETAP - verification

Verification Result

Result from ETAP software

https://www.youtube.com/watch?v=nk3zBFGJGtw&t=86s

Questions

- Next steps?
 - Continue on calculations to find what to do
- Eli to send MM, Project context doc, drawing set

Feedback and Updates

- Tasks: Updates
 - Bell: Calculations
 - Liam: Look for other vendor relays (ex. GE), equipment pricing
 - Eli: AutoCAD Equipment Schedules
 - Baylor: Autocad, ETAP, and calculations
 - Eduardo: Conduits
 - Chicheng: ETAP

