115/34.5 kV Solar Power Plant & Substation

Elymus Schaffer - <u>Team Lead</u> Baylor Clark - <u>Team Co-lead and Testing</u> Liam Gossman - <u>Client Correspondent</u> Eduardo Jimenez-Tzompaxtle - <u>Submission, Research, and Testing Leader</u> Siti Mohd Radzi - <u>Recorder and Testing</u> Chicheng Tang - <u>Research and Testing Leader</u>

<u>Client</u>- Black & Veatch: Adam Schroeder, Michael McDonald <u>Project Advisor</u>- Dr. Venkataramana Ajjarapu

Project Vision

Two Main Components: (All Conceptual)

- 60 MW Solar Farm Fall 2023
- 115/34.5kV Substation Spring 2024

SPP Interconnect - Located on the NM/TX border

Project Plan

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Eli Schaffer

Requirements- Functional

First Semester (Fall 2023)

- Research and select components
- Calculate equipment parameters, sizing, and layout
- Calculate voltage drops up to the substation
- Create solar layout drawings in AutoCAD

Second Semester (Spring 2024)

- Research and select substation equipment
- Calculate equipment parameters, sizing, and layout
- Create substation drawings in AutoCAD/BlueBeam
- Perform grounding analysis
- Simulate power flow of the overall system

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Liam Gossman

Requirements- Non-Functional

Environmental

- Flat and continuous land
- High annual sunshine and solar irradiance
- Safe substation power for nearby communities
- Efficient land use

<u>Economic</u>

• Our solar plant must be able to produce enough power per year to recover initial investment and operational costs over 10 years.

		Present Value
	Installation cost	Year
Profit	THE HARDEN	
	\$63,912,000.00	10
\$147,392,524.13	Revenue	O+M
	6140 012 202 14	£2 440 000 02

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Liam Gossman

Project Impact

<u>User</u>

 The electricity generated from the solar power plant will benefit the people of New Mexico, especially in Lovington.

For example,

- <u>Residential consumers</u>
- <u>Commercial and Industrial Consumers</u>
- <u>Government facilities</u>

User:

<u>Cost savings</u>: reduced electricity cost due to cheaper alternative.

<u>Reliability</u>: Reliable energy supply, reduced reliance on the main grid distribution.

<u>Clean energy access</u>: Reduce carbon footprint and promote sustainability.

Society:

<u>Job opportunities:</u> Construction, operation, and maintenance, benefiting local economies.

<u>Infrastructure development:</u> Enhance region's infrastructure, attract further investments and development. <u>Improved health</u>: Mitigate air and water pollution, improve public health and quality of life.

Humanity:

<u>Climate change mitigation:</u> Renewable energy sources contribute to global efforts on reducing greenhouse gas emissions.

Siti Mohd Radzi

Conceptual Diagram

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Siti Mohd Radzi

Design Standards & Practice - Solar Farm

Code	Standards Description
NEC690.8(B)	Overcurrent ratings shall not be less than 125% of the max current calculated
NEC690.8(A)	The maximum current shall be the sum of the short-circuit current ratings of the PV modules connected in parallel multiplied by correction multiplier, 125 percent.
NEC690.9	PV system dc circuit and inverter output conductors and equipment must be protected against overcurrent.
NEC 240.6	240.6(A) Fuses and Fixed-Trip Circuit Breakers: The standard ampere ratings for fuses and inverse time circuit breakers shall be considered 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600, 700, 800, 1000, 1200, 1600, 2000, 2500, 3000, 4000, 5000, and 6000 amperes.
NEC 210.19	Voltage drop would be 2% from DC, and 1% from AC side
NEC Table 8 Conductor Properties & NEC AWG Chart	Provides information on conductor properties, including ampacity, insulation types, and other specifications. NEC AWG Chart provides information on the ampacity of conductors based on their size (gauge) and the type of insulation which is crucial for ensuring that the conductors used in electrical installations can safely carry the expected current without overheating.
Lovington & Lea County Ordinance	The fence, wall or barrier required by [this subsection] shall not be less than eight (8) feet in height with no openings, holes or gaps larger than four (4) inches measured in any direction. Gates and doors opening directly into the area enclosed by a fence, wall or barrier, as required by this section, shall be equipped with a lock to keep the doors or gates securely closed and locked at all times. Tower sites located within industrial yard areas with existing secure fencing of the entire yard may construct secure fencing six (6) feet in height.

Overview of Solar Power Plant - 60MW

In a 60 MW solar farm, the solar panels connected in series for a string, to the total voltage of the string. Then, they are connected parallel into racks connected to the combiner box. The combiner box combines the power to the inverter, inverted into AC current. The inverter includes skids, would step-up the voltage to 34.5kV, before carried to the feeder to the substation.

PV Panels	Combiner Boxes	Inverters
 550 W 50.2 Voc 13.89 Isc 	 Supports 1500 VDC 16 Inputs 1 Output 	1500 VDC Inputs Converts DC to AC Transformer steps up voltage

1 array of solar panels

Siti Mohd Radzi

Array Parameter Tools

		String Size			Electrical Rack Siz	e			CB capacity			Array Design			Array Size	
				Designer Choice		portrait or Landscap e										
	Location Dependent	Min Temp	-40 C	Datasheet	Module width	3.72	ft	Datasheet (STC)	mod/string lsc	13.89 A	Designer Choice	Racks per row	16	Designer Choice	tilt	35
			s	Datasheet	module height	7.474	ft	NEC sect	imultiplier	1.25						
	Datasheet (STC)	Voc	50.2 V						nom lsc	17.3625	Designer Choice	rows per Array	24	х.	table height proj	6.122342 ft
	Datasheet (STC)	Ref temp	25 C	Designer Choice	Rack width	25	modules	Irr.	multiplier	1.25				-		
				Designer Choice	Rack height	1	modules		max lsc	21.70312 A	Designer Choice	Racks removed	2	Designer Choice	row space	10 ft
	Datasheet	Temp Coeff of Voc	-0.0029 /C		Modules per rack									1		
		Temp delta	-65		Rack width	93	ft	Choice:	allowed current	350 A		Total Racks/Array	382		pitch	16.12234 ft
		temp correction	1.19		Rack height	7.474	ft	200,	is this disconnec	t A?					Space for Inverter Maintenance	35 ft
		V0c corrected	59.6627					400A	strings per CB	16.12670		Total modules	9550		Array height	386.9362 ft
			-					etc.	Round down:	16						
onfirm		string voltage	1500 V						racks per CB	16	Datasheet (STC)	module capacity	550	w	Array width	1488 ft
ossible		String size	25.14133												Ground Coverage Ratio	0.463580
with	Designer	string size	25									dc capacity	5252.5	kW		
Panel	Choice: 600,	Actual String Voltage	1491.6										-	ri -		
type chosen	1000, 1500, 2000V										Designer Choice	inverter capacity	4000	kW		
													4	MVA		
												ILR	1.313125			
		Input Information =									Industry standard					
											1.3					

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Liam Gossman

Conceptual Final Design Diagram

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Baylor Clark

Overall Conceptual/Visual Sketch

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Baylor Clark

Overview of Substation- 115/34.5kV

The electricity travels through transmission lines to a substation, where another step-up transformer boosts the voltage further to 115 kV. This elevated voltage is suitable for seamless integration into the broader electrical grid. The electricity is fed into the grid, facilitating its distribution to various consumers, including homes and businesses.

The circuit diagram to the left shows 115/34.5kV system substation.

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Siti Mohd Radzi

Design Standards & Practice - Substation

Code	Standards Description
IEEE 80-2013	IEEE Guide for Safety in AC substation grounding
IEEE 998-2012	IEEE Guide for Direct Lightning Stroke Shielding of Substations
IEEE 485 -2020	IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stationary Applications
IEEE 605- 2008	IEEE Guide for Bus Design in Air Insulated Substations.
IEEE 1184-2006	IEEE Guide for Batteries for Uninterruptible Power Supply Systems

Conceptual Final Substation Design

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Eli Schaffer

System Design - Substation Layout

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Eduardo Jimenez-Tzompaxtle

Challenges & Risks

- Follow electrical codes/standards
 - IEEE/NEC and B&V requirements
- Accurate electrical calculations for design safety
 - Safety/Grounding
 - Battery Backup
 - Conductor spacing and sizing
- Project financial risks
 - Project should be financially viable
 - Need to keep cost in mind
- The team must also practice time management and good communication

Testing: Modeling

AutoCAD Design

• Power Flow Result

- Each PV array can produce 4.5 MW Power 12.5% more.
- Total Power produce is 67.3 MW.

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project

Chicheng Tang

Conclusions

Group Member Contributions

Bell: Calculations (Both Substation and Solar Farm), Cost Analysis, Site Location Research
Eduardo: AutoCAD drawings, Combiner Box Research, Bus Verification
Chicheng: ETAP Design,
Eli: AutoCAD Drawings, Poster, Website Design
Liam: Calculations, Client and Faculty communication, Component Selection
Baylor: Bi-weekly reports, ETAP

All Members: Weekly Meetings, Leadership Roles

Q&A Session

Iowa State University 115/34.5kV Solar Power Plant & Substation Design Project